miércoles, 15 de junio de 2011

SENSORES.

SENSOR CAPACITIVO.
La función del detector capacitivo consiste en señalar un cambio de estado, basado en la variación del estímulo de un campo eléctrico. Los sensores capacitivos detectan objetos metálicos, o no metálicos, midiendo el cambio en la capacitancia, la cual depende de la constante dieléctrica del material a detectar, su masa, tamaño, y distancia hasta la superficie sensible del detector. Los detectores capacitivos están construidos en base a un oscilador RC. Debido a la influencia del objeto a detectar, y del cambio de capacitancia, la amplificación se incrementa haciendo entrar en oscilación el oscilador. El punto exacto de ésta función puede regularse mediante un potenciómetro, el cual controla la realimentación del oscilador. La distancia de actuación en determinados materiales, pueden por ello, regularse mediante el potenciómetro. La señal de salida del oscilador alimenta otro amplificador, el cual a su vez, pasa la señal a la etapa de salida. Cuando un objeto conductor se acerca a la cara activa del detector, el objeto actúa como un condensador. El cambio de la capacitancia es significativo durante una larga distancia. Si se aproxima un objeto no conductor, (>1) solamente se produce un cambio pequeño en la constante dieléctrica, y el incremento en su capacitancia es muy pequeño comparado con los materiales conductores.

SENSOR INDUCTIVO.
Los sensores inductivos de proximidad han sido diseñados para trabajar generando un campo magnético y detectando las pérdidas de corriente de dicho campo generadas al introducirse en él los objetos de detección férricos y no férricos. El sensor consiste en una bobina con núcleo de ferrita, un oscilador, un sensor de nivel de disparo de la señal y un circuito de salida. Al aproximarse un objeto "metálico" o no metálico, se inducen corrientes de histéresis en el objeto. Debido a ello hay una pérdida de energía y una menor amplitud de oscilación. El circuito sensor reconoce entonces un cambio específico de amplitud y genera una señal que conmuta la salida de estado sólido o la posición "ON" y "OFF". El funcionamiento es similar al capacitivo; la bobina detecta el objeto cuando se produce un cambio en el campo electromagnético y envía la señal al oscilador, luego se activa el disparador y finalmente al circuito de salida hace la transición entre abierto o cerrado.


SENSORES FOTOELÉCTRICOS
 Este tipo de sensores se componen de 2 piezas, el emisor de luz y el receptor.  Cuando un Objeto corta el haz de luz,  el receptor detecta el cambio  y conmuta  el estado de la salida del sensor, es decir, si es Normalmente Abierto (NA) , se Cierra y viceversa.  Detecta todo tipo de objetos.


     Barrera Emisor-Recepto: El sensor viene en 2 piezas, el emisor y el receptor,  cuando el objeto atraviesa el haz de luz es cuando se activa el sensor.  
     Barrera Refractiva: En el cuerpo del sensor se encuentra el emisor y el receptor, en el otro extremo va una cinta refractiva para regresar el haz de luz.  Existen cintas refractivas con filtro, es decir que solo reflejan la luz que emite el sensor y discriminan cualquier otra señal luminosa.
 Sensor Difuso:   En el cuerpo del sensor se encuentra el emisor y receptor, estos están colocados con cierto ángulo, de tal manera, que el haz triangule sobre el objeto a censar y refleje la luz.  Es el de Menor Rango.
Todos cuentan con un control de ganancia para aumentar ó disminuir el rango de sensado. Normalmente los primero 2 tipos los ocupamos para detectar la presencia de objetos grandes. Detectar Tránsito de vehículos, personas, cajas, contenedores, etc.  En estos sensores manejamos rango de sensado que van de 1m hasta 150m,  el rango puede variar según el fabricante.
      Para detectar objetos pequeños con un poco más de precisión, utilizamos el Sensor Difuso.  El rango de sensado se puede variar con el control de ganancia, y también se ve afectado por la luminosidad del objeto a sensor. En estos sensores manejamos rango de sensado que va de 0mm hasta 150mm, el rango puede variar según el fabricante.
  El voltaje de alimentación de estos sensores puede ser 220vac, 110vac, 24vdc.  En voltaje Vdc pueden serNPN  ó PNP.  

SENSORES ULTRASÓNICOS
Existe una línea versátil de sensores que incluyen 30 mm de laminilla metal y albergues plásticos en dos estilos de albergue rectangulares
Es estrecho análogo y con rendimientos a dispositivos discretos extensamente, sensor múltiple de posicionamiento sensando los rasgos ambientales del entorno del robot.  
Los Blancos transparentes
Los sensores ultrasónicos son la mejor opción para los blancos transparentes. Ellos pueden descubrir una hoja de película de plástico transparente tan fácilmente como una paleta de madera. 
Los Ambientes polvorientos
Los sensores ultrasónicos no necesitan el ambiente limpio, necesitado por los sensores fotoeléctricos. El transductor piezoeléctrico sellado de resina opera bien en muchas aplicaciones polvorientas. 
Los blancos Desiguales
Muchas aplicaciones, como el descubrimiento de nivelado inclinado o los materiales desiguales. Éste no es ningún problema para el sensor ultrasónico. Este sensor ofrece 60° de ángulo de cono sónico. El ángulo del cono ancho permite una inclinación designada de +-15°. 
Velocidad de mando con el Rendimiento Analógico. 
El rasgo importante es directamente la corriente analógica y el voltaje proporcional a la distancia designada. El rendimiento analógico para la industria del tejido que procesa las aplicaciones como la tensión de la vuelta y diámetro del rollo de alfombra, papel, textil o plástico. 
La circuitería de supresión de ruido.
Los sensores ultrasónicos no se afectan su señal por vidrio o metal, ni vibraciones generadas por motores, inducidas a través de la línea. 
Operando en ambientes difíciles.
Los sensores sellados, soportan temperaturas de -25° a 70°C (-13° a 158°F) por lo cual se tiene un sensor listo para aplicaciones exigentes. 
Supresión de blancos en el fondo y en el primer plano. 
Los sensores ultrasónicos están provistos con un potenciómetro para ajustar el límite lejano de la ventana de calibración, la mayoría de las versiones también ofrecen un segundo el potenciómetro para ajustar el límite cercano. Esto permite supresión de blancos en el fondo y primer plano
SENSOR INFRARROJO.
El receptor de rayos infrarrojos suele ser un fototransistor o un fotodiodo. el circuito de salida utiliza la señal del receptor para amplificarla y adaptarla a una salida que el sistema pueda entender. la señal enviada por el emisor puede ser codificada para distinguirla de otra y así identificar varios sensores a la vez esto es muy utilizado en la robótica en casos en que se necesita tener mas de un emisor infrarrojo y solo se quiera tener un receptor.

Los sensores infrarrojos pueden ser:
Sensor infrarrojo de barrera: Las barreras tipo emisor-receptor están compuestas de dos partes, un componente que emite el haz de luz, y otro componente que lo recibe. Se establece un área de detección donde el objeto a detectar es reconocido cuando el mismo interrumpe el haz de luz. Debido a que el modo de operación de esta clase de sensores se basa en la interrupción del haz de luz, la detección no se ve afectada por el color, la textura o el brillo del objeto a detectar. Estos sensores operan de una manera precisa cuando el emisor y el receptor se encuentran alineados. Esto se debe a que la luz emitida siempre tiende a alejarse del centro de la trayectoria.
Sensor auto réflex: La luz infrarroja viaja en línea recta, en el momento en que un objeto se interpone el haz de luz rebota contra este y cambia de dirección permitiendo que la luz sea enviada al receptor y el elemento sea censado, un objeto de color negro no es detectado ya que este color absorbe la luz y el sensor no experimenta cambios.
Sensor réflex: Tienen el componente emisor y el componente receptor en un solo cuerpo, el haz de luz se establece mediante la utilización de un reflector catadióptrico. El objeto es detectado cuando el haz formado entre el componente emisor, el reflector y el componente receptor es interrumpido. Debido a esto, la detección no es afectada por el color del mismo. La ventaja de las barreras réflex es que el
cableado es en un solo lado, a diferencia de las barreras emisor-receptor que es en ambos lados.


SENSORES ULTRASONICOS.
Los sensores ultrasónicos tienen como función principal la detección de objetos a través de la emisión y reflexión de ondas acústicas. Funcionan emitiendo un pulso ultrasónico contra el objeto a sensor, y al detectar el pulso reflejado, se para un contador de tiempo que inicio su conteo al emitir el pulso. Este tiempo es referido a distancia y de acuerdo con los parámetros elegidos de respuesta con ello manda una señal eléctrica digital o analógica

SENSORES MAGNETICOS.
Los sensores de proximidad magnéticos son caracterizados por la posibilidad de distancias grandes de la conmutación, disponible de los sensores con dimensiones pequeñas. Detectan los objetos magnéticos (imanes generalmente permanentes) que se utilizan para accionar el proceso de la conmutación.los campos magnéticos pueden pasar a través de muchos materiales no magnéticos, el proceso de la conmutación se puede también accionar sin la necesidad de la exposición directa al objeto. Usando los conductores magnéticos (ej. hierro), el campo magnético se puede transmitir sobre mayores distancias para, por ejemplo, poder llevarse la señal de áreas de alta temperatura

SENSOR FIN DE CARRERA.
el final de carrera o sensor de contacto (también conocido como "interruptor de límite") o limit swicht, son dispositivos eléctricos, neumáticos o mecánicos situados al final del recorrido de un elemento móvil, como por ejemplo una cinta transportadora, con el objetivo de enviar señales que puedan modificar el estado de un circuito. internamente pueden contener interruptores normalmente abiertos (na), cerrados (nc) o conmutadores dependiendo de la operación que cumplan al ser accionados.
generalmente estos sensores están compuestos por dos partes: un cuerpo donde se encuentran los contactos y una cabeza que detecta el movimiento. su uso es muy diverso, empleándose, en general, en todas las máquinas que tengan un movimiento rectilíneo de ida y vuelta o sigan una trayectoria fija, es decir, aquellas que realicen una carrera o recorrido fijo, como por ejemplo ascensores, montacargas, robots, etc.

Sensor final de carrera.
Los finales de carrera están fabricados en diferentes materiales tales como metal, plástico o fibra de vidrio.









miércoles, 25 de mayo de 2011

TEMPORIZADORES.

Se denomina temporizador al dispositivo mediante el cual podemos regular la conexión o desconexión de un circuito eléctrico durante un tiempo determinado.
El temporizador es un tipo de relé auxiliar, pero se diferencia en que sus contactos no cambian de posición instantáneamente. 

¿Qué es un relé temporizador industrial?
Un relé temporizador es un componente que está diseñado para temporizar eventos en un sistema de automatización industrial, cerrando o abriendo contactos antes, durante o después del período de tiempo ajustado. Estos aparatos son compactos y constan de:
 Un oscilador que proporciona impulsos.
 Un contador programable en forma de circuito integrado.
 Una salida estática o de relé.
Es posible ajustar el contador mediante un potenciómetro graduado en unidades de tiempo, situado en la parte frontal del aparato. De este modo, el equipo cuenta los impulsos que siguen al cierre (o la apertura) de un contacto de control y al alcanzar el número de impulsos, es decir, una vez transcurrida la temporización, genera una señal de control hacia la salida.


Tipos de temporizadores.


Temporizador a la conexión.
Cuando el temporizador recibe tensión y pasa un tiempo hasta que conmuta los contactos, se denomina Temporizador a la Conexión

Es un relé cuyo contacto de salida conecta después de un cierto retardo a partir del instante de conexión de los bornes de su bobina. A1 y A2, a la red. El tiempo de retardo es ajustable mediante un potenciómetro o regulador frontal del aparato si es electrónico. También se le puede regular mediante un potenciómetro remoto que permita el mando a distancia; este potenciómetro se conecta a los bornes con las letras Z1 y Z2 y no puede aplicarse a los relés de los contactos






  

Temporizador a la desconexión.
Cuando el temporizador deja de recibir tensión y al cabo de un tiempo conmuta los contactos, se denomina Temporizador a la Desconexión.
Es un relé cuyo contacto de salida conecta instantáneamente al aplicar la tensión de alimentación en los bornes A1 y A2 de la bobina. Al quedar sin alimentación, el relé permanece conectador durante el tiempo ajustado por el potenciómetro frontal o remoto, desconectándose al final de dicho tiempo.



 Temporizadores térmicos.
Los temporizadores térmicos actúan por calentamiento de una lámina bimetálica. El tiempo viene determinado por el curvado de la lámina.
Constan de un transformador cuyo primario se conecta a la red, pero el secundario, que tiene pocas espiras y esta conectado en serie con la lamina bimetálica, siempre tiene que estar en cortocircuito para producir el calentamiento de dicha lamina, por lo que cuando realiza la temporización se tiene que desconectar el primario y deje de funcionar

Temporizadores neumáticos.
El funcionamiento del temporizador neumático esta basado en la acción de un fuelle que se comprime al ser accionado por el electroimán del relee.
Al tender el fuelle a ocupar su posición de reposo la hace lentamente, ya que el aire ha de entrar por un pequeño orificio, que al variar de tamaño cambia el tiempo de recuperación del fuelle y por lo tanto la temporización.




Temporizadores mecánicos

Son los temporizadores que actúan por medio de un mecanismo de relojería accionado por un pequeño motor, con embrague electromagnético. Al cabo de cierto tiempo de funcionamiento entra en acción el embrague y se produce la apertura o cierre del circuito.








Temporizadores electrónicos.

El principio básico de este tipo de temporización, es la carga o descarga de un condensador mediante una resistencia. Por lo general se emplean condensadores electrolíticos, siempre que su resistencia de aislamiento sea mayor que la resistencia de descarga: en caso contrario el condensador se descargaría a través de su insuficiente resistencia de aislamiento.





Temporizadores para arrancadores estrella triángulo.

Es un temporizador por pasos destinado a gobernar la maniobra de arranque estrella triángulo. Al aplicarle la tensión de alimentación, el contacto de estrella cierra durante un tiempo regulable, al cabo del cual se abre, transcurre una pausa y se conecta el contacto de triángulo. El tiempo de pausa normal está entre 100 y 150 ms.
Ahora hemos cogido las diferentes clases de temporizadores y les hemos aplicado a los relés con lo que tenemos las siguientes temporizaciones:

- Mecánica o neumática
- Magnética (relés de manguito).
- Térmicas (relés de bilámina).
- Eléctrica (relés de condensador).
Temporización neumática.

Un relé con temporización neumática consta esencialmente de tres partes principales :

1.- Un temporizador neumático que comprende un filtro por donde penetra el aire comprimido, un vástago de latón en forma de cono,
Solidario con un tornillo de regulación para el paso de aire un fuelle de goma y un resorte antagonista situado en el interior de este fuelle. El tornillo de regulación asegura la regulación progresiva de la temporización; las gamas de temporización cubren desde 0.1 segundos a 1 hora.

2.- Una bobina electromagnética para corriente continua o alterna, según los casos.

3.- Un juego de contactos de ruptura brusca y solidaria al temporizador neumático por medio de un juego de levas y palancas.
El relé de retardo a la desconexión tiene el siguiente funcionamiento: cuando se interrumpe la circulación de corriente por la bobina, el contacto solidario con ella tarda cierto tiempo en soltarse, debido a la acción del temporizador neumático. Al soltarse este contacto, actúa sobre un micro ruptor, que desconecta el circuito de mando.
La temporización puede ser a la excitación o a la des excitación de la bobina o combinando ambos efectos.


Temporización magnética.

En este caso, se trata de relés cuya bobina esta alimentada exclusivamente por corriente continua.
La temporización magnética se consigue ensartando en el núcleo magnético del relé, un tubo de cobre. Este tubo puede tener el espesor de algunos milímetros y rodear al núcleo en toda su longitud, constituyendo una camisa o bien puede ser de un diámetro igual a la base del carrete de la bobina y una longitud limitada, y en este caso se llama manguito; el manguito puede ser fijado delante, es decir, en la parte de la armadura o detrás, es decir, en la parte opuesta de la armadura. En ambos casos, como se verá enseguida los efectos de retardo serán distintos

a. Con camisa de cobre (retardo a la desconexión)
b. Con manguito de cobre, lado armadura (retardo a la conexión y a la desconexión).
c. Con manguito de cobre, lado culata (retardo a la desconexión)
1.-Culata, 2.- Núcleo de hierro, 3.- Camisa o manguito de cobre, 4.- Bobinado, 5.- Armadura.
La camisa o el manguito de cobre actúan como una espira en cortocircuito; la corriente inducida en esta espira cortocircuitada se opone a las variaciones del flujo que la han engendrado, lo que origina el efecto de retardo.

Como dicho efecto aumenta con la intensidad de la corriente inducida, será conveniente una camisa maciza de metal buen conductor como el cobre, directamente enfilada sobre el núcleo; de esta forma, se obtiene un buen retardo a la desconexión, mediante los relés de camisa, pero aumentando el efecto de atracción.
En los relés de manguito, cuando éste está en la parte anterior (fig. B), significa que el arrollamiento esta situado más atrás, aumentado el flujo dispersor y reduciendo por consiguiente, la eficacia de la bobina en la atracción; como consecuencia, se obtiene retardo tanto a la conexión como a la desconexión del relé.
Si el manguito está situado en la parte posterior del relé (fig. C), se obtiene solamente un retardo a la desconexión del relé, dada la posición del arrollamiento respecto a la armadura.

Temporización electrónica

La temporización electrónica está muy extendida. Se utiliza con relés electromagnéticos cuya bobina está prevista para ser alimentada con corriente continua. Para obtener una buena temporización, la tensión continua debe estabilizarse por ejemplo con ayuda de un diodo Zener.
El principio básico de este tipo de temporización es la carga o descarga de un condensador " C " mediante una resistencia " R”. Por lo general se emplean condensadores electrolíticos de buena calidad, siempre que su resistencia de aislamiento sea bastante mayor que la resistencia de descarga R: en caso contrario, el condensador C se descargaría a través de su insuficiente resistencia de aislamiento.
Esquema de la Temporización electrónica por carga de un condensador.
Esquema de la temporización electrónica por descarga de un condensador.
Situemos el inversor en la posición 1: el condensador C se cargará a la tensión E de la fuente de alimentación. Situemos el inversor en la posición 2: entonces el condensador se descargará progresivamente sobre la resistencia R.